首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65941篇
  免费   7354篇
  国内免费   4630篇
电工技术   14135篇
综合类   6380篇
化学工业   5512篇
金属工艺   7106篇
机械仪表   4824篇
建筑科学   6866篇
矿业工程   3191篇
能源动力   1939篇
轻工业   2616篇
水利工程   2609篇
石油天然气   2690篇
武器工业   540篇
无线电   5254篇
一般工业技术   7643篇
冶金工业   3474篇
原子能技术   808篇
自动化技术   2338篇
  2024年   125篇
  2023年   795篇
  2022年   1389篇
  2021年   2343篇
  2020年   2016篇
  2019年   1804篇
  2018年   1715篇
  2017年   2329篇
  2016年   2525篇
  2015年   2722篇
  2014年   3984篇
  2013年   3968篇
  2012年   4720篇
  2011年   5252篇
  2010年   3964篇
  2009年   4211篇
  2008年   3948篇
  2007年   4779篇
  2006年   4149篇
  2005年   3480篇
  2004年   2923篇
  2003年   2397篇
  2002年   2021篇
  2001年   1782篇
  2000年   1555篇
  1999年   1242篇
  1998年   995篇
  1997年   845篇
  1996年   753篇
  1995年   625篇
  1994年   526篇
  1993年   409篇
  1992年   372篇
  1991年   251篇
  1990年   216篇
  1989年   202篇
  1988年   128篇
  1987年   97篇
  1986年   59篇
  1985年   50篇
  1984年   62篇
  1983年   29篇
  1982年   38篇
  1981年   17篇
  1980年   19篇
  1979年   23篇
  1964年   10篇
  1961年   6篇
  1959年   11篇
  1955年   11篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
71.
YUE WANG  YUNFEI ZHENG  WEIRAN LI 《Biocell》2021,45(2):427-444
Orthodontic tooth movement is triggered by orthodontic force loading on the periodontal ligament and is achieved by alveolar bone remodeling, which is regulated by intimate crosstalk between osteoclastogenesis and osteoblast differentiation. Whether the communication between osteoclasts and osteoblasts is influenced by orthodontic compression stress requires further clarification. In this study, osteoclasts were differentiated for 10 days. On day 4 of differentiation, the number of pre-osteoclasts peaked, as determined by the increased expression of RANK and the number of multinucleated cells. After 24 h of compression stress loading, on day 4, the number of osteoclasts increased, and the optimal magnitude of stress to promote osteoclastogenesis was determined as 1 g/cm2. Moreover, the results of RNA-sequencing analysis showed that the miRNA expression profile changed markedly after compression loading and that many of the altered miRNAs were associated with cell communication functions. A series of indirect co-culture experiments showed an inhibitory effect of osteoclasts on osteoblast differentiation, especially after compression. Next, we added osteoclast-derived exosomes to hPDLSCs during osteoblast differentiation. Exosomes derived from osteoclasts under compression (cEXO) showed a greater inhibitory effect on osteoblast differentiation, compared to exosomes from osteoclasts without compression (EXO). Therefore, we analyzed differentially expressed miRNAs associated with bone development functions in exosomes: miR-223-5p and miR-181a-5p were downregulated, whereas miR-133a-3p, miR-203a-3p, miR-106a-5p, and miR-331-3p were upregulated; these altered expressions may explain the enhanced inhibitory effect of compression stress.  相似文献   
72.
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.  相似文献   
73.
Five-day exposure of clary sage (Salvia sclarea L.) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of “adaptive response” and “toxicity”, respectively.  相似文献   
74.
Drought and salinity can result in cell dehydration and water unbalance in plants, which seriously diminish plant growth and development. Cellular water homeostasis maintained by aquaporin is one of the important strategies for plants to cope with these two stresses. In this study, a stress-induced aquaporin, ZxPIP1;3, belonging to the PIP1 subgroup, was identified from the succulent xerophyte Zygophyllum xanthoxylum. The subcellular localization showed that ZxPIP1;3-GFP was located in the plasma membrane. The overexpression of ZxPIP1;3 in Arabidopsis prompted plant growth under favorable condition. In addition, it also conferred salt and drought tolerance with better water status as well as less ion toxicity and membrane injury, which led to more efficient photosynthesis and improved growth vigor via inducing stress-related responsive genes. This study reveals the molecular mechanisms of xerophytes’ stress tolerance and provides a valuable candidate that could be used in genetic engineering to improve crop growth and stress tolerance.  相似文献   
75.
76.
The wettability of 3 mol% Y2O3-stabilized ZrO2 (3YSZ) by molten Cu can be greatly improved by applying pulsed currents at 1373 K. The improvement was closely related to current polarity and influenced by duty cycle and frequency. When the Cu/3YSZ interface was under cathodic condition, the wettability was mainly improved by the formation of substoichiometric ZrO2-δ and metallic Zr at the interface. Increasing duty cycle caused the interface to change from forming protrusions to creating depression. Decreasing frequency further deepened the depression. In the opposite polarity, the adsorption and enrichment of oxygen reduced the solid-liquid and liquid-vacuum interfacial energies, thus improving the wettability. Only bubbles formed at the interface. The larger the duty cycle, the more rapidly bubbles formed and escaped. The effect of frequency at this polarity was weak. Overall, this work provides a novel and effective strategy for tailoring the wettability and interfacial chemistry between zirconia and metals.  相似文献   
77.
海胆酮是一种酮式类胡萝卜素,主要从海胆及藻类等海洋生物中提取。本文研究海胆酮对乙酰胆碱酯酶(acetylcholinesterase,AChE)的抑制作用,应用酶动力学、荧光光谱、圆二色光谱和分子对接技术研究海胆酮对AChE的抑制机理,并用淀粉样β蛋白片段25~35(amyloid beta-peptide 25-35,Aβ25-35)诱导大鼠肾上腺嗜铬细胞瘤细胞(PC12细胞)建立阿尔茨海默症(Alzheimer’s disease,AD)模型,研究海胆酮对AD细胞模型氧化应激损伤的作用。结果表明,海胆酮有很强的AChE抑制活性,其半抑制质量浓度为(16.29±0.97)μg/mL,抑制常数Ki为3.82 μg/mL,表现为竞争性抑制;海胆酮可诱导AChE二级结构改变,更容易与AChE活性中心氨基酸Ser200、His440、Trp84和Tyr121结合,阻碍底物碘代硫代乙酰胆碱(acetylthiocholine iodide,ATCI)与酶结合,从而引起酶活力降低。海胆酮能有效抑制Aβ25-35诱导PC12细胞的AChE活力,降低丙二醛含量,增加超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶活力,减轻Aβ25-35诱导的PC12细胞氧化应激损伤。本研究基于AChE和氧化应激阐明了海胆酮对AD的潜在作用机制,为海胆酮在功能食品、生物医药等领域的应用提供了数据支持和理论根据。  相似文献   
78.
Prediction of mode I fracture toughness (KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression (LMR) and gene expression programming (GEP) methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and elastic modulus (E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets. Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156, respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2 value and lower errors.  相似文献   
79.
The unified effective stress theory based on suction stress (SSCC theory) enables the characterization of soils under both saturated and unsaturated conditions with one closed-form relationship. This study provides experimental verification of this theory through the unconfined compressive strength test (UCS) and indirect tensile test strength (ITS) on silty clay soil stabilized with fiber. A series of matric suction, ITS, and UCS tests were conducted to validate the SSCC theory through the representation of the results of ITS and UCS tests in terms of mean total stress (p) versus deviatoric stress (q) and mean effective stress (p`) versus deviatoric stress (q). The results of the validation procedures showed that the SSCC theory is applicable and valid at a range of 6%–16% of water content on the silty clay and the silty clay fiber-reinforced soils. There is a small fluctuation in the increase of ITS and UCS values with increasing fiber content due to randomly oriented distribution of the fiber. The addition of glass fiber does not significantly affect the capacity of water retention of the soil. It improves the condition of the mechanical soil properties at the end of construction more than of the effective stress condition.  相似文献   
80.
This study investigated the effects of direct current magnetic field (DC-MF) treatment time (1, 3, 5, 8 h) on properties of porcine myofibrillar protein (MP). Gel water-holding capacity increased from 83.40% to 87.20% when DC-MF-treatment time changed from 1-h to 8-h. The 3-h treatment time of DC-MF was found to promote MP unfolding, rearrangement and aggregation, leading to the loss of total sulfhydryl, the increase of reactive sulfhydryl, surface hydrophobicity, turbidity as well as the formation of MP clusters and the greater degree of crosslinking as compared with 0-h treatment, thus a firmer and more ordered MP gel network for trapping more water. However, excessive DC-MF treatment (8-h) weakened DC-MF effect on MP aggregation as well as gel network and texture. This study has shed light on the effects of DC-MF treatment time on MP properties and provides useful information for the application of DC-MF in the food industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号